Polynomials defined by a difference system

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Difference Equations and Symmetric Polynomials Defined by Their Zeros

In this paper, we are starting a systematic analysis of a class of symmetric polynomials which, in full generality,was introduced in [Sa]. The main features of these functions are that they are defined by vanishing conditions and that they are nonhomogeneous. They depend on several parameters, but we are studying mainly a certain subfamily which is indexed by one parameter, r. As a special case...

متن کامل

On difference sequence spaces defined by Orlicz functions without convexity

In this paper, we first define spaces of single difference sequences defined by a sequence of Orlicz functions without convexity and investigate their properties. Then we extend this idea to spaces of double sequences and present a new matrix theoretic approach construction of such double sequence spaces.  

متن کامل

Orthogonal Polynomials Defined by a Recurrence Relation

R. Askey has conjectured that if a system of orthogonal polynomials is defined by the three term recurrence relation xp„-,(x) = -^ p„(x) + an_xPn_x(x) + -^pn-2(x) In tn-\ and (-0 then the logarithm of the absolutely continuous portion of the corresponding weight function is integrable. The purpose of this paper is to prove R. Askey's conjecture...

متن کامل

Curves Defined by Chebyshev Polynomials

Working over a field k of characteristic zero, this paper studies line embeddings of the form φ = (Ti, Tj , Tk) : A → A, where Tn denotes the degree n Chebyshev polynomial of the first kind. In Section 4, it is shown that (1) φ is an embedding if and only if the pairwise greatest common divisor of i, j, k is 1, and (2) for a fixed pair i, j of relatively prime positive integers, the embeddings ...

متن کامل

A Feature Descriptor by Difference of Polynomials

In this paper, we propose a novel local image descriptor DoP which is termed as the difference of images represented by polynomials in different degrees. Once an interest point/region is extracted by a common image detector such as Harris corner, our DoP descriptor is able to characterize the interest point/region with high distinctiveness, compactness, and robustness to viewpoint change, image...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1961

ISSN: 0022-247X

DOI: 10.1016/0022-247x(61)90033-6